Dy³⁺掺杂Ga-Sb-S玻璃的3~5 µm 发光研究

张鸣杰 杨安平*张 斌 任 和 郭 威 杨 艳 翟诚诚 王雨伟 杨志勇 唐定远 江苏省先进激光材料与器件重点实验室、江苏师范大学物理与电子工程学院、江苏 徐州 221116

摘要 制备了一系列 Dy³⁺掺杂新型 Ga-Sb-S硫系玻璃,研究了玻璃的热稳定性(玻璃态稳定性)、光学性能、结构和中 红外发光性能,通过组分微调改善了玻璃的抗析晶性能,拉制了高光学质量的光纤。结果表明,Dy³⁺掺杂 Ga-Sb-S 玻璃具有良好的热稳定性、优异的红外透光性和较低的声子能量,在2.95、3.59、4.17、4.40 µm 附近表现出较强的发 光;少量 As 替代 Sb 可显著减弱光纤拉制过程中玻璃的析晶倾向,同时未对玻璃的发光产生显著影响。光谱分析结 果显示,Dy³⁺在 Ga-Sb-S 玻璃中的 2.95 µm 和 4.17 µm 荧光量子效率分别为 88.1% 和 75.9%,对应的受激发射截面分 别为 1.1×10⁻²⁰ cm²和 0.38×10⁻²⁰ cm²。较高的量子效率和较大的受激发射截面使得 Dy³⁺掺杂 Ga-Sb-S 玻璃成为极具潜 力的中红外激光增益材料。

关键词 材料;中红外发光;硫系玻璃;稀土离子
 中图分类号 TN244;TQ125.1
 文献标识码 A
 doi: 10.3788/CJL201542.0806001

3~5 μm Luminescence of Dy³⁺-Doped Ga-Sb-S Chalcogenide Glasses

Zhang Mingjie Yang Anping Zhang Bin Ren He Guo Wei Yang Yan Zhai Chengcheng Wang Yuwei Yang Zhiyong Tang Dingyuan

Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

Abstract Novel Ga–Sb–S chalcogenide glasses doped with Dy^{3+} ions are synthesized. Their thermal stability, optical property, structure and mid–infrared (MIR) emission property are studied. The glass thermal stability against crystallization is significantly improved by slightly adjusting the glass composition, and therefore the fibers with good optical quality are drawn. The Dy^{3+} -doped Ga–Sb–S glasses show good thermal stability, excellent infrared transparency, low phonon energy, and intense emissions around 2.95, 3.59, 4.17 and 4.40 µm. The substitution of a small amount of Sb with As reduces the crystallization tendency of the glass during the fiber drawing without making remarkable effects on the emission property. Spectral analyses indicate that the quantum efficiencies of the 2.95 µm and 4.17 µm emissions of Dy^{3+} ion in the Ga–Sb–S glass are 88.1% and 75.9%, respectively; and the respective stimulated emission cross sections are 1.1×10^{-20} cm² and 0.38×10^{-20} cm². The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions in the Dy^{3+} doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.

Key words materials; mid-infrared luminescence; chalcogenide glasses; rare earth **OCIS codes** 160.4670; 140.3380; 160.5690

1 引 言

3~5 μm中红外激光器在红外对抗、大气传感、环境监测和生物医学等领域均具有重要的应用,在过去几 十年受到了广泛关注^[1-5]。目前,光学参量振荡器(OPO)和量子级联激光器(QCL)是使用较广泛的中红外激光

收稿日期: 2015-01-27; 收到修改稿日期: 2015-04-14

基金项目:国家自然科学基金(61405080, 61205207)、江苏省自然科学基金(BK20140239)、江苏高校优势学科建设工程资助项目

作者简介:张鸣杰(1987—),男,硕士研究生,主要从事硫系玻璃方面的研究。E-mail:zhang-mingjie@outlook.com 导师简介:杨志勇(1980—),男,博士,教授,主要从事红外玻璃与光纤等方面的研究。E-mail:yangzhiyong@jsnu.edu.cn *通信联系人。E-mail:apyang@jsnu.edu.cn

光源。然而,OPO系统复杂,QCL存在激光稳定性问题,并且两者成本都比较高,这些缺点限制了其在实际中的应用^[5-6]。基于激活离子掺杂增益介质的固体激光器通常具有集成度高、效率高和成本低等优点,近年来备受关注。目前,中红外固体激光器面临的主要问题之一是缺少高质量的增益介质。在过去二十年间,研究人员对晶体和玻璃增益介质做了大量的研究和评估^[57-11],并在稀土掺杂和过渡金属掺杂的晶体材料中获得了中红外(3~5 μm)激光输出^[9,12-13]。与晶体介质相比,玻璃具有易制备和易成形等优点,因此更利于制备高效率和低成本的激光器。硫系玻璃具有低的声子能量(150~450 cm⁻¹),以此类玻璃为基质的稀土掺杂增益介质^[14-18]被认为是一类极具潜力的中红外激光材料。自从 Er³⁺掺杂 As₂S₃玻璃的中红外发光^[14]被报道后,为了寻找合适的中红外激光增益介质,研究人员对不同稀土离子掺杂硫系玻璃和光纤进行了大量研究,并对其中红外发光性能进行了评价^[3,19-22]。最近,Ga-Sb-S系统^[23]被发现可以形成稳定的玻璃,其声子能量显著低于被广泛研究的 Ge-基和 As-基硫化物玻璃。本文以 Ga-Sb-S 玻璃为基质,研究了掺杂离子 Dy³⁺的中红外发光特性,并对 Dy³⁺掺杂 Ga-Sb-S 玻璃作为中红外激光增益介质的可行性进行了评估;通过引入少量 As 显著提高了玻璃的抗析晶性能,拉制了具有高光学质量的光纤。

2 实 验

2.1 样品制备

玻璃样品采用传统的熔融-急冷法制备,玻璃组分为Gas-_{*}Sb₃₂S₆₀Dy_x,其中 x=0,0.1,0.2,0.4,0.6。选取高 纯 Ga(质量分数为 99.9999%)、Sb (质量分数为 99.9999%)、S (质量分数为 99.9999%)和 Dy(质量分数为 99.99%) 单质作为原料,在高纯氮气保护下的手套箱中按化学组成精确称取 6 g 原料放入内径为 9 mm的石英管中,抽 真空至 1×10⁻³ Pa后用氢氧焰进行封接。为了尽可能除去原料表面的水分,在封接前将处于真空状态下的装 有混合料的石英管在 100 ℃处理 2 h。将封接完毕的石英管放入摇摆炉中,以 1 ℃/min 的速率升温至 950 ℃,保温 12 h 后取出,在水中淬冷并在低于玻璃化转变温度(*T_s*)20 ℃的温度退火 3 h。最后,将所得玻璃进行切割 和抛光用于测试。

2.2 样品的性能表征

玻璃的特征温度采用美国 TA Q2000 差示扫描量热仪(DSC)测量,将约15 mg玻璃密封于铝坩埚中用于 测试,升温速率为10℃/min。样品的透射光谱采用美国 Perkin-Elmer Lambda 950分光光度计(500~3300 nm) 和德国 Bruker TENSOR 27 傅里叶变换红外光谱仪(2.5~25 μm)进行测试。3~5 μm 中红外发射光谱采用英国 Edinburgh FS980荧光光谱仪测得,所用探测器为液氮制冷稳态 InSb,激发光源为1.32 μm 半导体激光器。为 了消除光栅衍射(激发光和荧光的多级衍射)可能导致的错误信号,在单色仪入口前放置了一块 Ge 片以消除 波长小于 2.3 μm 的信号。在荧光衰减的测试中,采用脉宽为 50 μs、重复频率为10 Hz 的1.32 μm 脉冲作为激 发光,所用探测器为液氮制冷瞬态 InSb,使用数字荧光示波器(TDS3000C)记录衰减曲线。拉曼光谱采用美国 BWTek BWS415便携式拉曼光谱仪测得,激发波长为 785 nm。样品的折射率采用美国 JA Woollam IR-VASE 红外椭偏仪测试,角度设置为 65°和 70°,分辨率为 32 cm⁻¹。所有测试均在室温下进行。

3 结果与讨论

表1列出了样品的玻璃化转变温度 T_s 和玻璃析晶起始温度 T_x 。随着 Dy^{3*} 掺杂浓度的增加,玻璃的 T_s 逐渐升高,用来评价玻璃热稳定性(玻璃态稳定性)的参数 $\Delta T(=T_x - T_s)$ 均大于100 °C,表明它们具有良好的热稳定性。

Table 1 Characteristic temperatures of Ga _{8-x} SD ₃₂ S ₆₀ Dy, glasses									
x	$T_{\rm g}~(\pm 1^{\circ}{ m C})$	$T_{\rm x}$ (±1°C)	$T_x - T_g$ (°C)						
0	239	357	116						
0.1	243	345	102						
0.2	245	346	101						
0.4	246	349	103						
0.6	248	360	112						

	表1 Ga8-xSb32S60Dyx玻璃的特征温度	
Table 1	Characteristic temperatures of $Ga_{8-x}Sb_{32}S_{60}Dy_x$ glass	sse

图 1(a)和(b)是样品在不同波段的透射光谱。样品的短波吸收边在710~780 nm之间,红外截止边约为 14 μm。掺杂样品在 500~3300 nm 波段有 6 个吸收带,它们分别归因于 Dy³⁺的电子跃迁,即从基态⁶H₁₅₂跃迁 至图中所示激发态。样品在4.1 μm附近均存在显著吸收,对于未掺杂样品,此吸收由S-H杂质引起。值得 注意的是,对于掺杂样品,4.1 µm吸收带随Dy3*掺杂浓度的增加而逐渐增强。由于所有样品的制备条件相 同,因此该吸收带的增强很可能是由Dy³的基态吸收导致的,即在基态⁶H₁₅₂和激发态⁶H₁₅₂之间可能存在一个 虚拟能级^[24](标记为能级 V,如图 2 所示),更多的证据将在下文提供。

图 1 Dy³⁺掺杂 Gas-, Sb₃₂S₆₀Dy, 玻璃在(a) 500~3300 nm 波段和(b) 3.3~15 µm 波段的透射光谱(样品厚度为 2mm) Fig.1 Transmission spectra of Dy³⁺-doped Ga₈₋₄Sb₃₂S₆₀Dy_x glasses in the (a) 500~3300 nm range and

图 2 Dy³⁺离子的能级及相关跃迁

Fig.2 Energy levels of Dy³⁺ ions and related transitions

图 3 是 Dy³⁺掺杂样品的中红外发射光谱。从图中可以看出 4 个明显的荧光带,其中心位置分别位于 2.95、3.59、4.17和4.40µm。其中2.95和4.40µm荧光带分别源于⁶H₁₃₂→⁶H₁₅₂和⁶H₁₃₂→⁶H₁₃₂跃迁。然而根据 现有的文献资料很难确定 3.59 和 4.17 μm 荧光峰的归属,这些荧光峰在 Dy3*掺杂固体发光材料的研究中被 多次观察到^[1235],但作者往往避而不谈或未给出合理解释。若前述虚拟能级 V存在,3.59和4.17μm荧光峰就 可分别归属于⁶H₁₁₂→V和V→⁶H₁₅₂跃迁(见图 2),这与上述Dy³⁺掺杂样品在4.1 μm吸收强度的变化规律相一 致。从图3可以看出,Dy³⁺掺杂摩尔分数为0.2%的样品具有最强的发光;当掺杂浓度较小时,由于激活离子 数量较少,发光较弱;当掺杂浓度较高时,由于浓度猝灭效应[26],发光强度减弱。

图 4 显示了掺杂摩尔分数为 0.2%样品的 2.95 和 4.40 µm 荧光衰减曲线,通过单指数拟合获得的荧光寿 命分别为 3.6 和 1.4 ms。采用相同方法得到的 3.59 μm 荧光寿命为 1.4 ms。3.59 和 4.4 μm 荧光具有相同的衰 减寿命,表明它们对应的跃迁应该具有相同的上能级,因此可以推测3.59 um的跃迁上能级为°Hug,这与之 前讨论的3.59μm发射的归属相一致。

图5给出了基质硫化物玻璃GasSb32S60和已被广泛研究的硫化物玻璃Ge25Ga10S65的拉曼光谱。前者表现 为一个峰值位于 306 cm⁻¹的宽谱带,包含了 S₃Ga-GaS₃ (~265 cm⁻¹) 类乙烷结构单元^{127-28]}、[GaS₄] (~342 cm⁻¹)共 顶点四面体结构单元^[28-29]和 [SbS₃] (~305 cm⁻¹)三角锥结构单元^[30-31]的振动。后者可分解为7个次级拉曼峰,分 别对应于 S₃Ga-GaS₃ (~265 cm⁻¹)类乙烷结构单元、[Ge(Ga)S₄] (~308、342、390、425 cm⁻¹)共顶点四面体结构单

Fig.3 Mid-infrared emissions of $Dy^{3*}\text{-}doped\ Ga_{8-x}Sb_{32}S_{60}Dy_x$ glasses when pumped at 1.32 μm

衰减曲线 Fig.4 2.95 µm and 4.40 µm fluorescence decay curves of

Ga_{7.8}Sb₃₂S₆₀Dy_{0.2} glass

元^[27-29]、[Ge(Ga)S₄] (370 cm⁻¹) 共边四面体结构单元和 S-S(~438 cm⁻¹)键结构单元的振动。Ga₈Sb₃₂S₆₀玻璃显示出 比 Ge₂₅Ga₁₀S₆₅玻璃更低的声子能量,使得前者具有更长的红外截止边(Ga₈Sb₃₂S₆₀和 Ge₂₅Ga₁₀S₆₅玻璃的红外截止 边分别为14和12 μm)。低的声子能量也利于减小激发态的多声子弛豫速率(MPR),提高稀土离子的中红外 发光效率。

图 5 Ga₈Sb₃₂S₆₀和Ge₂₅Ga₁₀S₆₅玻璃的拉曼光谱

Fig.5 Raman spectra of $Ga_8Sb_{32}S_{60}$ and $Ge_{25}Ga_{10}S_{65}$ glasses

为了评估 Dy³⁺掺杂 Ga-Sb-S 玻璃作为中红外激光增益介质的可行性,对 Ga_{7.8}Sb₃₂S₆₀Dy_{0.2}玻璃进行了 Judd-Ofelt(J-O)光谱分析^[32-33],获得了三个 J-O 强度参数(Ω₂=8.5×10⁻²⁰ cm²,Ω₄=2.1×10⁻²⁰ cm²和Ω₆=1.6×10⁻²⁰ cm²),并依据参考文献[34-35]中的方程计算得到了 Dy³⁺能级间跃迁的光谱参数,如表 2 所示。作为比较,Dy³⁺在其他硫化物玻璃中的光谱参数也被列入表中。与其他硫化物玻璃基质相比,Dy³⁺在 Ga-Sb-S 玻璃中具有较高的 2.95 和 4.4 μm 荧光量子效率和较大的受激发射截面,这归因于该玻璃较低的声子能量和较高的折射率。较高的量子效率和较大的发射截面使得 Dy³⁺掺杂 Ga-Sb-S 玻璃成为一种极具潜力的中红外激光增益介质。

尝试了将 Dy³*掺杂 Ga-Sb-S 玻璃拉制成光纤,尽管 DSC 数据表明其具有较好的热稳定性,但拉制光纤过 程中仍出现了表面析晶现象,导致光纤失透。通过引入少量 As使玻璃的热稳定性得到了显著提高,拉制出 了高光学质量的光纤。摩尔分数为4% As的引入使ΔT从 108 ℃增加到 143 ℃,析晶峰显著减弱(图 6),同时 稀土离子的发光未发生显著变化(图 7)。图 8 为拉制的直径为 300 μm 的质量分数为 0.05% Dy³⁺掺杂 Ga₈Sb₂₈As₄S₆₀玻璃光纤,其在工作波长为 940 nm 的显微相机下表现出极好的透光性,未发现析晶迹象和显微 缺陷,相关研究仍在进行中。 表2 Dy³在不同玻璃基质中的光谱参数。 λ 是波长,*n*是折射率, β 是荧光分支比, τ_{rad} 是能级的辐射寿命, τ_{mea} 是测量的荧光寿命, η 是量子效率, σ_{en} 是受激发射截面

Table 2 Radiative parameters of Dy^{3*} ions in different host glasses. λ is wavelength, *n* is refractive index; β is fluorescence branch ratio; τ_{rad} is radiative lifetime of the upper level for the transition; τ_{mea} is measured fluorescence lifetime; η is quantum efficiency; and σ_{em} is stimulated emission cross section

Host glass	Transition	λ/μm	n	β /%	$ au_{ m rad}/{ m ms}$	$ au_{ m mea}$ /ms	η /%	$\sigma_{\rm em}/10^{-20}{\rm cm}^2$	Reference
GaSbS	${}^{6}\mathrm{H}_{11/2} {\longrightarrow} {}^{6}\mathrm{H}_{13/2}$	4.40	2.69	14	1.87	1.42	75.9	0.38	This work
	$\rightarrow^{6}\mathrm{H}_{15/2}$	1.79	2.75	86		1.44		0.48	This work
	${}^{6}\mathrm{H}_{13/2} {\longrightarrow} {}^{6}\mathrm{H}_{15/2}$	2.95	2.72	100	4.11	3.62	88.1	1.11	This work
GeGaS	${}^{6}\mathrm{H}_{11/2} {\longrightarrow} {}^{6}\mathrm{H}_{13/2}$	4.40	2.08	14.4	3.17	1.31	41.3	0.36	This work
	$\rightarrow^{6}\mathrm{H}_{15/2}$	1.79	2.12	85.6		1.32		0.47	This work
	${}^{6}\mathrm{H}_{13/2} {\longrightarrow} {}^{6}\mathrm{H}_{15/2}$	2.95	2.10	100	6.99	3.53	50.5	0.86	This work
GaLaS	${}^{6}\mathrm{H}_{11/2} {\longrightarrow} {}^{6}\mathrm{H}_{13/2}$	4.27	-	14	2.53	1.3	51.4^{*}	_	[36]
	${}^{6}\mathrm{H}_{13/2} {\longrightarrow} {}^{6}\mathrm{H}_{15/2}$	2.83	2.4	100	6.29	3.6	57.2	0.92	[36]

^{*}This value is recalculated without taking β into account.

Fig.6 DSC curves of the Dy^{3+} -doped Ga-Sb-S glasses before and after the substitution of a small amount

of Sb with As

图 7 用少量 As 替代 Sb 前后 Dy³⁺掺杂 Ga-Sb-S 玻璃的 中红外发射光谱

Fig.7 Mid-infrared emission spectra of Dy³⁺-doped Ga-Sb-S glasses before and after the substitution of a small amount of Sb with As

4 = 5 3 = 1 4 = 0 4 = 0 1 = 0 4 = 0 0 =

图 8 Dy³⁺掺杂 Ga₈Sb₂₈As₄S₆₀光纤的光学照片,采用工作波长为 940 nm 的显微相机拍摄 Fig.8 Infrared image of Dy³⁺-doped Ga₈Sb₂₈As₄S₆₀ fiber taken by a micro-camera operating at 940 nm

4 结 论

 Dy^{3*} 掺杂 Ga-Sb-S硫系玻璃具有良好的热稳定性和优异的红外透光性,它们在 2.95、3.59、4.17、4.40 µm 处具有较强的中红外发射。Ga-Sb-S玻璃的低声子能量使其表现出更长的红外截止边(~14 µm),同时也有 利于降低 Dy^{3*} 能级的 MPR。在 Ga_{7.8}Sb₃₂S₆₀Dy_{0.2}玻璃中, 2.95 和 4.4 µm 荧光的量子效率分别为 88.1%和 75.9%, 发射截面分别为 1.1×10^{-20} 和 0.38×10^{-20} cm²。用少量 As 替代 Sb 可显著提高 Ga-Sb-S 玻璃的抗析晶性能,利于 拉制高光学质量的光纤。

参 考 文 献

1 Guo B J, Wang Y, Peng C, et al.. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Opt Express, 2004, 12(1):

208-219.

- 2 Mirov S B, Fedorov V V, Moskalevet I S, et al.. Recent progress in transition-metal-doped II VI mid-IR lasers[J]. IEEE J Sel Top Quant, 2007, 13(3): 810-822.
- 3 Seddon A B, Tang Z Q, Furniss D, et al.. Progress in rare-earth-doped mid-infrared fiber lasers[J]. Opt Express, 2010, 18(25): 26704-26719.
- 4 Eggleton B J, Davies B L, Richardson K, et al.. Chalcogenide photonics[J]. Nat Photon, 2011, 5(3): 141-148.
- 5 Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nat Photon, 2012, 6(7): 423-431.
- 6 Brown E, Hömmerich U, Bluiett A G, et al.. Mid-infrared emission properties of Nd-doped lead halides for photonic applications[J]. Mater Sci Eng: B, 2008, 146(1-3): 103-106.
- 7 Schneide J, Carbonnier C, Unrau U B, *et al.*. Characterization of a Ho³⁺-doped fluoride fiber laser with a 3.9 μm emission wavelength [J]. Appl Opt, 1997, 36(33): 8595-8600.
- 8 Voronov A A, Kozlovskii V I, Korostelin Y V, *et al.*. Laser parameters of a Fe: ZnSe laser crystal in the 85~255 K temperature range[J]. Quant Electron, 2005, 35(9): 809-812.
- 9 Fedorov V V, Mirov S B, Gallian A, *et al.*. 3.77~5.05 μm tunable solid state lasers based on Fe²⁺-doped ZnSe crystals operating at low and room temperatures[J]. IEEE J Sel Top Quant, 2006, 42(9): 907-917.
- 10 Lin C G, Dai S X, Liu C, *et al.*. Mechanism of the enhancement of mid-infrared emission from GeS₂-Ga₂S₃ chalcogenide glassceramics doped with Tm³⁺[J]. Appl Phys Lett, 2012, 100(23): 231910.
- 11 Charpentier F, Starecki F, Doualan J L, et al.. Mid-IR luminescence of Dy³⁺ and Pr³⁺ doped Ga₅Ge₂₀Sb₁₀S(Se)₆₅ bulk glasses and fibers[J]. Mater Lett, 2013, 101(1): 21-24.
- 12 Djeu N, Hartwell V E, Kaminskii A A, et al.. Room-temperature 3.4-µm Dy: BaYb₂F_slaser[J]. Opt Lett, 1997, 22(13):997-999.
- 13 Mirov S, Fedorov V, Moskalev I, *et al.*. Recent progress in transition metal doped II-VI mid-IR lasers [J]. IEEE J Sel Top Quant Electro, 2007, 13(3): 810-822.
- 14 Heo J, Jang J N, Kim Y S. Optical characteristics of chalcogenide and heavy metal oxide glasses doped with rare earths[C]. SPIE, 1992, 1817: 134-140.
- 15 Schweizer T, Hewak D W, Samson B N, et al.. Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass[J]. J Lumin, 1997, 72(96): 419-421.
- 16 Aggarwal I D, Shaw L B, Sanghera J S. Chalcogenide glass for mid- and long-wave IR fiber lasers[C]. SPIE, 2005, 5709: 242-248.
- 17 Ren J, Wagner T, Bartos M, *et al.*. Intensity near-infrared and mid-infrared luminescence from the Dy³⁺-Doped GeSe₂-Ge₂Se₃-MI (M=K, Cs, Ag) chalcohalide glasses at 1.32, 1.73 and 2.67 μm[J]. J Appl Phys, 2011, 109(3): 033105-033112.
- 18 Guo H T, Xu Y T, Chen H Y, et al.. Spectroscopic properties and Judd-Ofelt analysis of Dy³⁺-doped and Dy³⁺, Tm³⁺-codoped Ge-In-S chalcogenide glasses[J]. J Non Cryst Solids, 2013, 377(8): 95-99.
- 19 Moizan V, Nazabal V, Troles J, et al.. Er³⁺-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy[J]. Opt Mater, 2008, 31(1): 39-46.
- 20 Dai S X, Peng B, Zhang P J, *et al.*. The near-and mid-infrared emission properties of Tm³⁺-doped GeGaS-CsI chalcogenide glasses [J]. J Non Cryst Solids, 2010, 356(44-49): 2424-2428.
- 21 Lin H, Chen D Q, Yu Y L, *et al.*. Enhanced mid-infrared emissions of Er³⁺ at 2.7 μm via Nd³⁺ sensitization in chalcohalide glass[J]. Opt Lett, 2011, 36(10): 1815-1817.
- 22 Ichikawa M, Ishikawa Y I, Wakasugi T, *et al.*. Mid-infrared emissions from Ho³⁺ in Ga₂S₃-GeS₂-Sb₂S₃ glass[J]. J Lumin, 2012, 132 (3): 784-788.
- 23 Yang Anping, Zhang Mingjie, Yang Zhiyong, et al.. A Type of Sulfide Infrared Glasses and Their Preparation Method: China, CN201410558086. X[P]. 2014-10-20.

杨安平,张鸣杰,杨志勇,等.一种硫化物红外玻璃及其制备方法:中国,CN201410558086.X[P].2014-10-20.

- 24 Terra I A A, González L J B, Carvalho J M, *et al.*. Spectroscopic properties and quantum cutting in Tb³⁺-Yb³⁺ co-doped ZrO₂ nanocrystals[J]. J Appl Phys, 2013, 113(7): 073105.
- 25 Shafir I, Nause A, Nagli L, et al.. Mid-infrared luminescence properties of Dy-doped silver halide crystals[J]. Appl Opt, 2011, 50 (11): 1625-1630.
- 26 Yang Z Y, Li B T, He F, *et al.*. Concentration dependence of Dy³⁺:1.3 μm luminescence in Ge-Ga-Sb-Se glasses[J]. J Non Cryst Solids, 2008, 354(12): 1198-1200.

- 27 Heo J, Yoon J M, Ryou S Y. Raman spectroscopic analysis on the solubility mechanism of La³⁺ in GeS₂-Ga₂S₃glasses[J]. J Non Cryst Solids, 1998, 238(1): 115-123.
- 28 Ichikawa M, Wakasugi T, Kadono K. Glass formation, physico-chemical properties, and structure of glasses based on Ga₂S₃-GeS₂-Sb₂S₃system[J]. J Non Cryst Solids, 2010, 356(43): 2235-2240.
- 29 Musgraves J D, Wachtel P, Gleason B, et al.. Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system[J]. J Non Cryst Solids, 2014, 386: 61-66.
- 30 Kamitsos E I, Kapoutsis J A, Culeac I P, et al.. Structure and bonding in As-Sb-S chalcogenide glasses by infrared reflectance spectroscopy[J]. J Phys Chem B, 1997, 101(51): 11061-11067.
- 31 Lin C G, Li Z B, Ying L, *et al.*. Network structure in GeS₂-Sb₂S₃ chalcogenide glasses: Raman spectroscopy and phase transformation study[J]. J Phys Chem C, 2012, 116(9): 5862-5867.
- 32 Judd B R. Optical absorption intensities of rare-earth ions[J]. J Phys Rev, 1962, 127(3): 750-761.
- 33 Ofelt G S. Intensities of crystal spectra of rare-earth ions[J]. J Chem Phys, 1962, 37(3): 511-520.
- 34 Chen D Q, Wang Y S, Yu Y L, *et al.*. Spectroscopic properties of Er³⁺ ions in transparent oxyfluoride glass ceramics containing CaF₂ nano-crystals[J]. J Phys Condens Mat, 2005, 17(41): 6545-6557.
- 35 Yang Z Y, Chen W, Luo L. Dy³⁺-doped Ge-Ga-Sb-Se glasses for 1.3 μm optical fiber amplifiers[J]. J Non Cryst Solids, 2005, 351 (30): 2513-2518.
- 36 Schweizer T, Hewak D W, Samson B N, *et al.*. Spectroscopic data of the 1.8-, 2.9-, and 4.3- μm transitions in dysprosium-doped gallium lanthanum sulfide glass[J]. Opt Lett, 1996, 21(19): 1594-1596.

栏目编辑:张浩佳